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Simple criteria for convergence of Monte Carlo algorithms not necessarily 
requiring detailed balance for any specified transition probability are derived and 
it is shown that it is possible to view the algorithm as a superimposition of a 
Brownian motion on configurational space coupled to the transition prob- 
abilities. As such, the error contributions due to a particular Monte Carlo algo- 
rithm and the integration limits in configuration space must be distinguished 
from those due to the nonuniform sampling of the Brownian motion, and criteria 
related to the number of steps required to distinguish these errors are provided 
for the simplest cases involving one dimension and symmetrical probability 
distributions. 
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The normal Monte Carlo (MC) procedures use the pivotal condition of 
detail balance ~n -~1 coupled with linear master equations with a normalized 
probability of states that appear to incorporate a type of random walk 
within the transition probabilities, c~ although the algorithm can call points 
randomly in configurational space. In the M(RT) 2 procedure ~'2) the 
transition probabilities are written in standard notation Itl as 

Pj, = Aj~, U ~  Uj 
= Ajk exp[ - (  Uk --  U j ) / k T ] ;  Uk> Uit k # j  (1) 

with 

Pi,.= 1 - ~. Pjk (2) 
k # j  
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where (2) is the defined normalization condition, Ajk is the space factor 
defined as Ajk = 1/8NO 3 for all j, k during the perturbation of coordinates, 
[x j -x~[  < ~, and Ajk = 0 otherwise (' }; d is the 'grid size' of the configura- 
tion space and thus the algorithm does not preclude a uniform calling of 
any point in configuration space which is then represented by the weight 
given by the above transition probabilities. Usually, however, the points 
are picked beforehand (3) in a defined fi neighborhood of the previous 
points, so it is not so clear what the equivalence of this method is to that 
where the transition probabilities incorporate the above space factor, ('~ but 
where the points are randomly chosen, as assumed in the theory. Here we 
suggest an equivalence based on the random walk. Ergodicity is supposed 
to prevail to ensure a stationary distribution in the limit of large 
numbers. (') Practically all routine Monte Carlo runs are based on the pre- 
vailing condition of detailed balance, (2} but recently there have appeared 
suggestions (4~ that some systems (e.g., spin system phase transitions) do not 
exhibit detailed balance, but where, under appropriate conditions, the cited 
algorithms for statistical simulations may still be utilized. To extend the 
method to cases where detailed balance and normalization may or may'not 
be directly applicable requires simple and general criteria which are 
provided here. For a system uniformly sampled by an algorithm in con- 
figuration space ~ which specifies transition probabilities Po such that the 
number of times a state is visited is proportional to the probability 
density, (5} consider the case when the configuration space g2 is divided into 
a countable set of states represented by grids of arbitrary size dx, and 
which has probability P; of occupying state i [ where in the continuous case 
Pi ~f(xi) dx, with f the probability density]. For N states, the probability 
of choosing state j from i is Prc(i,j)~ 1IN. Hence the number of times any 
state j is called from i in the entire run of the algorithm is approximately 
constant, ~nt  .... . Since the MC method is concerned only with relative 
probability weights, we get 

PffP,,.~nt . . . .  2 [Pu +(1 -Pj, l]/nt . . . .  2 [Pqi+(1--P,q)] 
iv~j q•i 

o r  (3) 

Pj/P~= lira [Po+(1-Pj~)] [Pq~+(1-P~q)] 
N ~  i i 

Furthermore, since the number of systems is conserved, we must also 
have for N--. oo, for all indices q, r, 

lim = 
N ~  1 t j = l  

1 (4) 
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Conditions (3) and (4) taken together ensure the workability of any MC 
algorithm with the defined transition probabilities not necessarily exhibiting 
detailed balance. It can be shown that the typical MC transition prob- 
abilities obeying detailed balance (including P u =  Pj, where the detailed 
balance condition PiPu= PjPji is fulfilled trivially as PjP~= PjP~) fulfills 
both (3) and (4). Regarding the superimposition of a random walk in 
configuration space with the specified MC transition probabilities, the 
description below is for one dimension using symmetrical probability 
distributions throughout, but which can be generalized in some cases to 
higher orders. In practice, multidimensional spaces which do not possess 
symmetry in the occupation of states and which require integration to 
infinite limits are often explored, so that personal experience, familiarity, 
trial and error, and comparision with other techniques and experiment are 
the usual criteria for confidence in MC methods, rather than reliance 
on mathematical formulas for specifying convergence. However, a rough 
indication of the minimum number of steps N to achieve an approximately 
uniform sampling of s'-2 even for simple symmetrical functions of configura- 
tional space occupancy is useful. If a number below the minimum number 
of steps leads to values deemed to be those for converged results, then one 
can argue that the coincidence is fortuituous, and did not arise from the 
uniform sampling of the configuration space, but from the combined effects 
of nonuniform sampling coupled with the probability distribution used to 
compute the transition probabilities. 

For a general MC method with the background configuration space 
chosen not randomly but via a random walk with mean step size Ax, then 
if Ax is "small", the probability distribution of the random walk particle 
coordinate approximates the (Brownian motion) Gaussian function with 
variance ~-'= (Ax)'-t, where t is the length of the run N. ~6~ As a rough 
measure, we suppose that over ~ 1 standard deviation of the random walk 
a, the configuration space is uniform (for refinement, a smaller interval 
may be chosen and the subsequent equation modified by substituting qa 
for a, where q <  1). If the actual probability density is Pac(x), and if the 
actual points x are chosen with frequency weighted according to P,r then 
standard theory (sl gives 

N 

.: s_. .,.> ....> ..-- [ .<.,)}I- 
and the accuracy of the integral can be estimated. Assume Pac is symmetri- 
cally distributed about an origin with standard deviation ad and that A(x) 

nO~d is bounded, where I ... .  ~ Pat(x) dx = di (and ~ ~ 1, n being an integer which 
must be specified). Since it is not possible to sample to infinite limits, the 
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value of the integral is relative to the specified limits "[-/'tO" a .  Denote the 
states covered by the range (approximately +naa) as {i,j, k ..... n}. Then to 
first order, where the primed quantities are the apparent probabilities of 
the states generated by the approximately "uniformly" distributed random 
walk x values over approximately + la, 

. . . . .  ... ~Pi :e j :  .. p , , . . .  Pi.P~. Pk P ' , " "  

and P~. :~ Pj in general for the same j state (a is the standard deviation of 
the random walk distribution). Hence, following this approximation, 

fa P ' ( x ) d x = k S  '~ P a c d x = l  (k~>l) (5) 
- - n O  d 

where P'(x) is any arbitrary distribution which approximates the Pj. states. 
Let e =  {max IA(x)l, Ixl >~ncrd}, q / -N=naa /Ax=L,  and kS=  1 [from (5)]. 
Since had = Ax x /~ ,  for e( 1 - 6) << I, a heuristic criterion for the error % 
P in the integral A is given for large enough N (as N ~ ~ )  by 

/I 1 P ~  lOOe(1 - 5 ) N  ~ A(x,) 
t L i ~ l  

1 = l O O e ( k - 1 ) L  2 k ~ A(x)  
i = l  

(6) 

Thus zlx and N may be chosen to reduce the error by an arbitrary amount. 
We emphasize that (6) represents the estimate of the absolute error of the 
integral, due to the truncation of the limits at + naa of the integral, which 
must be distinguished from the MC error due to fluctuations. The latter are 
normally computed by dividing the number of moves into intervals and 
calculating the desired quantity A for each of the intervals; one derives a 
measure for the error of A from the different .4 values from these intervals. 

Regarding an estimate of the minimal run number N, to achieve a 
uniform sampling of the configuration space, we observe that this occurs 
when a = naa and N = N,, where 

N, ~ (naa/Ax)'- (7) 

For values of N >> N,, the errors in the integral will be due to the par- 
ticular characteristics of the MC method and the limits of (2 space, and are 
not due to the distortion of the configuration space due to the random 
walk. Lastly, the equivalence of the above, where the points in configura- 
tion space are chosen with fixed step size in each step, to the method 
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described by (1) and (2), where the points in configuration space are 
chosen randomly, comes from noting that the probability of moving in the 
space with limits + L  is J/2L with mean step size ~/2. The mean number 
of steps before a move is 2L/J, and so the effective step variable is 
N' = NJ/2L. For L = naa, the minimal number of N, steps required for 
uniform sampling is 

N t  ~ 8(ntr d)2/t~ 3 (8)  

and any value of N >> N, will ensure that the errors are largely attributable 
to the MC rate of convergence and the limits rather than nonuniformity of 
sampling I2 space. 

The conclusion of this note is that it is possible to provide simple 
criteria for the convergence of MC algorithms without necessary detailed 
balance and the errors involved if a nonuniform random walk is super- 
imposed on the configuration space without immediate recourse to Markov 
chains and linear master equations. 
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